Helicobacter pylori and Porphyromonas gingivalis lipopolysaccharides are poorly transferred to recombinant soluble CD14.

نویسندگان

  • M D Cunningham
  • C Seachord
  • K Ratcliffe
  • B Bainbridge
  • A Aruffo
  • R P Darveau
چکیده

Helicobacter pylori and Porphyromonas gingivalis are gram-negative bacteria associated with chronic inflammatory diseases. These bacteria possess lipopolysaccharides (LPSs) that are able to activate human monocytes to produce tumor necrosis factor alpha but fail to activate human endothelial cells to express E-selectin. With Escherichia coli LPS, tumor necrosis factor alpha activation requires membrane-bound CD14 and E-selectin expression requires soluble CD14 (sCD14). Therefore, the ability of H. pylori and P. gingivalis LPSs to transfer to and bind sCD14 was examined by using immobilized recombinant sCD14 and human serum or recombinant LPS-binding protein (LBP). H. pylori and P. gingivalis LPSs were transferred to sCD14 when serum or LBP was present. However, the transfer of these LPSs to CD14 in serum was significantly slower than the transfer of E. coli LPS. Quantitation of the transfer rates by Michaelis-Menten kinetics yielded K(m) values of 6 and 0.1 nM for H. pylori and E. coli LPSs, respectively. The amount of P. gingivalis LPS required to obtain half-maximum binding to CD14 was approximately 10-fold greater than the amount of E. coli LPS required. The slower transfer rates displayed by these LPSs can be explained by the poor binding to LBP observed in direct binding assays. These results are consistent with the proportionately lower ability of these LPSs to activate monocytes compared with E. coli LPS. However, the ability of H. pylori and P. gingivalis LPSs to bind LBP and transfer to sCD14 demonstrates that the lack of endothelial cell CD14-dependent cell activation by these LPSs occurs distal to sCD14 binding.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CD14 employs hydrophilic regions to "capture" lipopolysaccharides.

CD14 participates in the host innate inflammatory response to bacterial LPS obtained from Escherichia coli and other Gram-negative bacteria. Evidence from several laboratories suggests that different regions of the amino-terminal portion of the molecule may be involved in LPS binding. In this report a series of single-residue serine replacement and charge reversal mutations were generated to fu...

متن کامل

Innate immunomodulation by lipophilic termini of lipopolysaccharide; synthesis of lipid As from Porphyromonas gingivalis and other bacteria and their immunomodulative responses.

Synthetic studies of lipid A and LPS partial structures have been performed to investigate the relationship between structures and functions of LPS. Recent studies have suggested several pathological implications of LPS from parasitic bacteria due to its influence on the host immune responses. To address this issue, we established an efficient synthetic strategy that is widely applicable to the...

متن کامل

Porphyromonas gingivalis lipopolysaccharide contains multiple lipid A species that functionally interact with both toll-like receptors 2 and 4.

The innate host response to lipopolysaccharide (LPS) obtained from Porphyromonas gingivalis is unusual in that different studies have reported that it can be an agonist for Toll-like receptor 2 (TLR2) as well as an antagonist or agonist for TLR4. In this report it is shown that P. gingivalis LPS is highly heterogeneous, containing more lipid A species than previously described. In addition, pur...

متن کامل

Identification of CD14 residues involved in specific lipopolysaccharide recognition.

CD14 is a key molecule responsible for the innate host inflammatory response to microbial infection. It is able to bind a wide variety of microbial ligands and facilitate the activation of both myeloid and nonmyeloid cells. However, its specific contribution to the innate recognition of bacteria is not known. Presently there is no information on the contribution of individual CD14 residues to E...

متن کامل

MD-2 mediates the ability of tetra-acylated and penta-acylated lipopolysaccharides to antagonize Escherichia coli lipopolysaccharide at the TLR4 signaling complex.

We have demonstrated previously that tetra-acylated LPS derived from the oral bacterium, Porphyromonas gingivalis, and penta-acylated msbB LPS derived from a mutant strain of Escherichia coli can antagonize the ability of canonical hexa-acylated E. coli LPS to signal through the TLR4 signaling complex in human endothelial cells. Activation of the TLR4 signaling complex requires the coordinated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Infection and immunity

دوره 64 9  شماره 

صفحات  -

تاریخ انتشار 1996